朱 GCL GCL The same of

朱雀二号遥二运载火箭发射成功

液氧甲烷推进器成火箭动力"新宠"

普 中 国

科普中国 科普中国 APP

科普中国

□石晓龙

7月12日9时许,中国民营航天企 业蓝箭航天的朱雀二号遥二火箭从酒泉 卫星发射中心点火升空,发射任务取得 圆满成功,成为世界上首款成功将载荷 送入预定轨道的液氧甲烷火箭,标志着 近年热门的"液氧甲烷潮流"向着实用化 迈出了坚实的第一步。

那么,火箭选择液氧甲烷推进剂有 哪些好处?液氧甲烷火箭又具备怎样的

从灶台到火箭

虽然液氧甲烷火箭发动机的实用化 历程在近年逐渐引发关注,但其"萌芽" 的年代却相当早。1931年3月,德国火 箭先驱约翰内斯·温克勒主持发射了人 类第一枚液氧甲烷火箭——"休克尔-温 克勒一号"。该火箭与后辈"长相"区别 很大,燃料储存于管内,唯一的发动机位 于火箭中央。可惜该火箭仅飞到约60 米高度,在当时也找不到实用价值,因此

20世纪中期,液体火箭快速发展。 当时液体火箭发动机选择煤油、液氢等 作为主要燃料,甲烷仍然"缺席"。

随着天然气被送入厨房灶台和工厂 机组,其燃烧效率高、绿色环保、成本低、 易制取等优点日益突出,甲烷也逐渐成 为火箭发动机科研人员无法忽视的燃料

20世纪80年代,我国开展了含甲烷 火箭燃料发动机的预究工作,众多航天 动力研究单位积累了大量研究成果和经 验,为液氧甲烷发动机飞天打下了坚实

虽然各国航天对于含甲烷火箭燃料 的研究工作开展得较早,但是由于种种限 制和考量,整个20世纪里,液氧甲烷发动 机都没能推动火箭入轨发射,而是保持着 技术验证和探索者的身份,默默无闻。

直到21世纪20年代,在经过半个多 世纪的技术沉淀后,液氧甲烷发动机终 于抵达实用化阶段的"门槛"。与此同 时,可回收复用火箭技术逐渐成熟,促使 液氧甲烷推进剂扬长避短,成为未来火 箭动力的"新宠"。

动力"新宠"优点多

在推进剂性能方面,液氧甲烷对比 传统的液氧煤油各有优劣。在密度方 面,相同设计条件下,液氧甲烷的组合密 度比液氧煤油低20%左右,意味着液态 甲烷的能量密度不如液氧煤油。而在比 冲上,甲烷的理论比冲值比煤油高3%左 右,但比冲很容易受到诸如发动机循环 方式等因素影响,因此煤油与甲烷的比 冲可以说是基本相同的。在冷却效果 上,甲烷展现出作为低温燃料的优势,得 益于比热容指标,其综合冷却能力是煤 油的3倍以上,并且作为含碳燃料,不易 结焦积碳,这对于发动机实际使用效果 来说更加"友好"

在发动机维护性上,甲烷则有天生 的优势。如今,可回收复用火箭成为大 势所趋,液氧煤油火箭在回收后必须对 发动机进行彻底清洗才能继续使用,而 液态甲烷为强挥发性燃料,液氧甲烷发 动机由此显著减轻了后勤维护工作量。

在火箭储箱等结构设计上,甲烷燃 料的使用也给火箭带来了积极的影响。 液氧作为氧化剂,沸点约为-183℃,甲烷 作为还原剂,沸点约为-161℃,两者较为 接近,远远不像液氧和液氢那样沸点温 差悬殊。因此,选择清洁燃料时,液氧甲

从而有效降低储箱重量,缩短长度,促使 火箭箭体减重,增强运载能力,还可以弥 补在组合密度上的劣势。此外,甲烷的 可挥发性强,因此储箱可以采用自生增 压设计,进一步助力高效减重。

因此,液氧甲烷发动机性能强大,使 用成本低廉,综合特性非常适合可回收 复用火箭技术的发展潮流,成为火箭动 力的"新宠"也就不足为奇了。

厚积薄发攀高峰

本次任务是朱雀二号火箭第二次发 射,其首次发射在去年12月14日进行, 遗憾的是,在火箭第二级飞行过程中,发 动机管道破裂,导致游机出现异常,载荷 未能入轨。朱雀二号火箭团队及时归零 故障,改进后收获成功,殊为不易。

据公开资料显示,我国蓝箭航天、九 州云箭、星际荣耀、宇航推进等多家民营 航天企业正在开展液氧甲烷火箭及发动 机的开发工作,陆续取得了可观的成果, 其中进展最快的就是蓝箭航天。

该公司研发的"天鹊-12"是国内首 款投入使用的液氧甲烷发动机,采用燃 气发生器循环,海平面推力为67吨,海 平面比冲达286秒,真空推力80吨,真 空比冲可达337秒,室压约为10兆帕。

朱雀二号火箭第一级安装有4台 "天鹊-12",起飞推力可达268吨。而蓝 箭航天还在持续改进这款发动机,新型 号"天鹊-12A"未来有望在朱雀二号火

当前,朱雀二号火箭第二级安装有 单台"天鹊-12"和"天鹊-11"10吨级液氧 甲烷游动发动机。其中,第二级的"天 鹊-12"与第一级发动机状态相同,并未 进行真空优化。未来,朱雀二号火箭将 取消游机,取而代之的是"天鹊-15A"80 吨级可变推力泵前摆液氧甲烷发动机, 可以认为是"天鹊-l2A"的真空优化改 进版。未来,"天鹊-l2A"和"天鹊-l5A" 成功应用后,朱雀二号火箭有望在降低 成本的同时进一步提升运力,满足更多 类型的发射需求,适应未来商业化航天 发射市场需求。

生物多样性

你是否曾见过这样的场景:海边 或船上的人们使用各种工具,试图将 附着在海龟或鲸鱼身上的"壳儿"清 除。这些"壳儿"就是藤壶,虽然它们 体形不大,但却非常顽固。它们"足不 出户"便能跟随其他海洋生物或者船 只遨游四海,实现"居家旅行"。这些 藤壶是如何附着在其他海洋生物上 的?对其他生物以及人类有影响吗?

不同生长阶段各有特点

藤壶属于节肢动物门,拥有坚硬 的外壳,通常成群出现,并且具有强大 的生存能力。它们不仅附着在礁石、 船底和海堤上,还会寄生在螃蟹、海龟 和鲸鱼等生物身上。

在进入海洋时,藤壶的幼体没有 固定的栖息地,它们虽然能游泳,但 触角只能划水,因此它们主要依靠 "随波逐流"的方式生存,并时刻小心 捕食者的追击。幼体时期,藤壶的死 亡率很高。

漂浮一段时间后,小藤壶开始 寻找适合定居的地方,并进入第二 阶段——腺介幼体期。小藤壶会在 物体表面短距离地来回运动,通过触 角感知地形。它们喜欢表面粗糙不平 的地方。此外,定居地周围的水流速

藤壶:"居家旅行"的小懒虫

度、采光和温度等因素也是小藤壶考 虑的重要因素。

分泌胶体来固定

完成"探索"后,小藤壶开始定 居。那么,它们是如何附着的呢?

事实上,藤壶一旦选定地点,它们 触角上的吸盘就会开始分泌一种称为 藤壶胶的物质。这种藤壶胶会包裹住 触角,并牢固地将小藤壶附着在物体 表面。藤壶胶主要由多种蛋白质组 成,具有极强的黏性、防水性和抗生物 降解性。当它们定居在动物的皮肤上 时,还会利用自身外壳上的内扣来固 定,并不断向下生长,随着时间的推 移,逐渐深入到皮肤内部,避免因宿主 的死皮脱落而脱离。

打开壳板即可进食

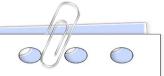
成年藤壶完全放弃了自由运动的 能力,主要通过过滤浮游植物和有机 碎屑来获取食物。成体藤壶的外壳由 几块壳板组成,本体通常隐藏在壳 内。壳顶部有一个孔,孔上覆盖着可 以通过肌肉运动打开或关闭的壳板。 当藤壶需要进食时,只需打开壳板,伸 出触角,形成扇状结构,"顺手"进食。

如果藤壶定居在岸边的礁石上, 它们只能等待海浪的来临才能进食。 因此,对藤壶而言,能够随时移动的生 物才是它们的理想之选,这样就能"边 走边吃",根本不缺食物。当然,也有 一些不幸的藤壶会选择错误的定居 地,最终干死或饿死。

多寄生干鲸鱼和海龟身上

藤壶虽然喜欢附着在其他生物身 上"游览",但也给宿主带来了负担。

由于藤壶幼体的游泳速度较慢, 它们更倾向于寄生在体形庞大且游泳 速度较慢的鲸鱼和海龟身上。尽管成 熟的藤壶个体并不大,但成群出现时 它们的重量仍然不容忽视。被藤壶附 着的鱼类和海龟在日常的游动和捕食 过程中可能会失去平衡。


对于鲸鱼而言,由于它们的体形庞 大,藤壶对它们的影响相对较小,通常被 认为是一种利益共生的关系(一种对一 方有益而对另一方无害的共生现象)。

生活中藤壶的运用

藤壶虽小,但却在海洋生态系统 中扮演着重要的角色,同时也给人类 带来了各种影响。

例如,藤壶会附着在船舶表面,导 致航行速度减慢、燃料消耗增加,威胁 航行安全。藤壶的聚集还会增加海上 石油平台和相关建筑结构的重量,导 致建筑结构的抗风能力降低,甚至倾

当然,藤壶并非一无是处。科学 家们根据藤壶胶的特性研制出了生 物胶水,它不仅可以迅速止血,而且 不依赖于体内的凝血机制。此外,在 水下工业和组织工程等领域,人们也 正在从藤壶身上汲取灵感,进行新的 (本报综合)

第六届重庆市公民科学素质大赛 "赛"点知识

小小金属管解决高原冻土难题

□刘峰汛

在近期举行的第六届重庆市 公民科学素质大赛綦江区赛场复 赛中,綦江区代表队以《天路护卫 队——热棒》为题向观众介绍了埋 在冻土中的热棒,赢得了观众阵阵

去过青藏高原的人不难发现, 在青藏铁路的路基两旁,时不时地 会闪过一排排金属管,这些金属管 一端埋在地底,一端露出地面。很 多人会好奇:这些整齐排列的金属 管有什么用呢?

其实,这些金属管叫热棒,是 一种由碳素无缝钢管制成的高效 热导装置。众所周知,青藏高原环

境恶劣,海拔高气温低,不仅氧浓 度低,还有一些融尘和高原冻土, 这些融尘和冻土会破坏土层结构, 致使路面发生变形甚至是塌陷,可 以说是青藏铁路修建过程中最大 的拦路虎。

因为冻土里的含冰量很高,温 度升高冻土就会融化下沉,导致路 基也跟着下沉。一到冬天,路基被 冻住后又会上升,在这种情况下, 铁路结构会受到损害,严重的还会 造成铁路事故。

为此,青藏铁路的设计师们 苦心研究,终于找到了给冻土降 温的方法,其中一个就是我们看 到的热棒

据了解,热棒是一种由碳素无

缝钢管制成的高效热导装置,5米 埋入地下,地面露出2米。热棒上 部(放热段)装有散热片,热棒的下 部(吸热段)直接埋入多年冻土 中。它的结构大致为一个密闭空 心长棒,内装有一些液氨。

热棒具有独特的单向传热性 能:热量只能从地面下端向地面上 端传输,反向不能传热。液氨沸点 较低,在冬季土中热量使该液体蒸 发到顶部,通过散热片将热量传导 给空气,冷却后又液化回到下部,保 持冻土冷冻状态不松软。在夏季, 液体全部变成气体,气体对流很小, 热量向底部传导很慢。独特的冷却 地温的作用使热棒堪称"魔棒"

中国人自己的冻土治理技术一

低温热棒,成功解决了40多年来 一直困扰中国科学家和青藏铁路 建设者的重大技术难题——青藏 铁路路基多年冻土层夏季融沉、冬 季冻胀的不稳定问题。

通过热棒的单向导冷作用,冬 天在地下冻土层中储存大量冷量, 在夏季使冻土不融化,形成"永冻 层",提高了冻土的强度,可有效防 止以冻土为路基的铁路、公路在运 行时的融沉。热棒技术广泛应用 于冻土地带的铁路、公路、桥梁、涵 洞、隧道、固变电铁塔、矿山等工程

(本文科普知识点由重庆市科 学传播专家团成员、交通运输领域 专家彭勇提供指导)

我市科协系统积极开展 全国节能宣传周活动

7月10日至16日是第33个全国节能宣传周,活动主题是"节能 降碳,你我同行"。该活动是实施全面节约战略、开展节能降碳宣传 教育、推动形成绿色低碳生产生活方式的重要举措。我市科协系统 积极响应节能降碳倡议,开展了形式各样、具有特色的节能宣传活 动,营造了良好的社会氛围

江北区科协 迎峰度夏节约用电宣传深入人心

在第33个全国节能宣传周期 间,江北区科协积极联合各部门开展 节能宣传系列活动,积极响应节约用 电倡议,营造节约用电、科学用能、迎 峰度夏的良好氛围,以实际行动支持 国家节能减排工作。

一是江北区科协同多部门联合 在观音桥步行街开展2023年迎峰度 夏节约用电宣传活动启动仪式,多部 门联合发布节约用电倡议,同市民朋 友们共同观看节约用电主题盲传片, 并设置节约用电宣传服务区。

二是在江北科普公众号及线下

志愿服务活动当中,积极宣传节能节 电低碳科普知识,发放"家庭节能36 计""生活垃圾分类指导手册"等节能 宣传资料及环保购物袋。

三是积极履行节约用电倡议,减 少使用一次性水杯、签字笔、矿泉水 等.7月12日全国低碳日当天响应机 关事务局号召,办公区域及公共区域 停开空调停用照明。

接下来,江北区科协将积极开展 节约用电节能减排科普宣传,营造节 约用电、科学用能、迎峰度夏的良好 氛围,以实际行动支持国家节能减排 工作,为建设资源节约型、环境友好 型社会做出应有的贡献。

武隆区科协 线上线下开展节能减排宣传

□通讯员 郑雪

近日,武隆区科协、区机关事务 管理中心在武隆区政府大院联合开 展全国节能宣传周宣传活动,15个 区级机关200余名职工参与。该活 动旨在运用线上和线下多种宣传手 段,宣传节能降碳和绿色发展理念, 倡导全民养成绿色低碳、简约适度 生活方式。

据了解,本次宣传活动的主题为 "节约用电,'节'尽所能"。该活动的

启动仪式结束后,举行了现场签名活 动,邀请职工观看"公共机构绿色三 分种展播",向他们发放倡议书和宣 传资料。此外,职工们还参与了微信 晒步数、趣味知识问答、有奖竞猜等

据了解,在全国节能宣传周期 间,武隆区各部门、各乡镇、各街道将 持续开展低碳日体验、废旧物品绿色 兑换等活动,通过播放节能宣传公益 广告、推送节能小知识、开展步行体 验等方式宣传节能降碳理念。

彭水县科协 科普"双碳"知识 倡导绿色理念

□通讯员 李佳芯

为进一步传播节能降碳和绿色 发展理念,倡导绿色低碳生活方式, 充分发挥公共机构在全社会绿色低 碳发展中的示范引领作用,由彭水县 发改委牵头,县科协、县经信委、县卫 健委、县农业农村委、县交通局、供电 公司等10余家单位在县城两江广场 共同开展了2023年节能宣传周暨全 国低碳日活动。

活动现场,工作人员和科普志愿 者向来往群众普及碳达峰碳中和、绿 传手册、环保袋共计2000余份。此 外,科普志愿者向来往群众仔细讲解 节能降碳的重要性和正确做法。

本次节能宣传周活动主要包括 居家节能降碳、农业农村绿色生产、 科技节能降碳、重点领域节能降碳、 公共机构绿色低碳等多个专题,涵盖 工业、农业、建筑、交通运输等重点节 能领域,覆盖机关、学校、企业、社区 等各个方面,重点开展生态优先、节 约节能、绿色低碳发展等知识的科普

市专业救援总队开展2023年 水上救援及通信要素综合演练

指战员,携带各类抢险救援装备45台 套,在合川区开展2023年水上救援及 通信要素综合演练。

当前正值重庆"七下八上"防汛关 键期,此次演练模拟我市某流域因山 洪暴发导致船员落水,群众被困情 景。市专业救援总队从驻地迅速机动

至事发水域,通过架设"静中通"指挥 车,成立现场指挥部,与市局指挥中心 和相关区县建立音视频互联互通,进 行会商研判,制定救援方案。开展多 舰艇水上编队搜救,无人艇输送物资, 水上飞翼营救,救援艇、冲锋舟协同救 援等演练科目。经过1小时紧张营救, 救援队成功救出全部被困群众,完成 演练任务。

本次演练检验了我市专业救援总 队远程应急通信保障能力和水上救援 实战化能力,构建了防汛区域联合救援 新机制,为打好防汛"主动仗"奠定坚实 基础。

(重庆市应急管理局供稿)

●张鹏身份证遗失,证号。500101199306033114,自见报之日起不承担被人胃用而引发的一切法律责任、特此声明。
● 石 梅 君 于 2023 年 07 月 03 日 不 慎 遗 失 身 份 证 ,证 号:500108198501150420。本人日中领新证,此记已失效、特此声明。
● 罗罗华于 2023年7 月 11 不慎遗失身份证 证号。500114199908301069,本人已中领新证,此证已失效、特此声明。

101173315522377, 1911作6度。 10117331552237, 1911作6度。 10117331552237, 1911作6度。 101120151483, 声明作废。 10120151483, 声明作废。 10231年7月5日不慎遗失身份证。证号;5002120200110153560, 20120151483, 声明作废。 10231年7月5日不慎遗失身份证。证号;50021200507187217 20231年7月5日不慎遗失身份证。证号;500101199706273328, 上甲领新证,此证已失效,转此声明。 124、日本分子。10212199708180013,有效期限。2018年11月20日。 20231年7月13日不慎遗失身份证。证号;500241199310234118。 本人已判领新证,此证已失效,转此声明。 20231年7月13日不慎遗失身份证。证号;500241199310234118。 本人已判领新证,此证已失效,持此声明。 20231年7月13日不慎遗失身份证。证号;500241199310234118。 40231年7月20日本发机关键,11月20日本人已增加,11月20日本人已判领新证,此证已失效,持此声明。 20231年7月20日本日,11日本

● 係畫 〒2023 年7月5日不慎遗失身份证、证件号:50011520050/18/24/1,本人已单领新证。此证已失效、特此声明。
◆ 使名:黄江 门于2023 年6 0月 30日、本人在贵州省贵阳市不慎遗失第
◆ 李炎于2023 年7月13日不慎遗失身份证、证号:500241199310234118.

一代身份证 号码为:51021219903180013、有效期限:2018年11月20日
2088年11月20日、答发机关:重庆市公安局施化分局,自本声明安市进步。
遗失日起所有与本身份证有关事情与本人无关,将此声明。
● 张 元 程于 2023 年7月14日 不慎遗失身,份证、证号:50022200507040056. 本人已申领新证。此证已失效、特此声明。
● 张 元 程于 2023 年7月14日 不慎遗失身,份证、证号:50022200507040056. 本人已申领新证。此证已失效、特此声明。
● 张 元 程于 2023 年7月17日,此证已失效,特此声明。
● 张 元 程于 2023 年7月18日 不慎遗失身,份证、证号:50022200507040056. 本人已申领新证。此证已失效,特此同用。
● 张 元 第十一章 14 日 不慎遗失身,份证、证号:50022200507040056. 本人已申领新证。此证已失效,特此同用。
● 张 元 第十一章 1203 年7日,14日,在 遗失身,份证、证号:50022200507040056. 本人已申领新证。此证已失效,特此同用。
● 张 元 第十一章 14日,在 读 表 身,份证、证号:500241199310234118.