盘点十大新兴技术(九)

制氢新技术让世界进入"绿氢"时代

众所周知,全球变暖是目前世界面临的重大危机 之一,减少碳排放、降低碳化石能源使用比例,以及发 展清洁能源刻不容缓。其中,氢能就是能源转型技术 路线之一,在未来,"绿色氢气"或许能够用来填补可 再生能源的巨大空白。

传统制氢产生大量温室气体

氢气是无毒、无色气体,是地球上最丰富的元素, 氢原子约占宇宙总质量的四分之三。氢气除了用于 发电、交通燃料外,还被广泛用于炼油、氨和甲醇的生 产以及钢铁制造中。据估计,每年全球对氢气的需求

由于地球上没有天然氢沉积物,人们必须通过化 学方法将氢从其他化合物中提取出来。当前绝大多 数工业氢都是通过蒸汽甲烷重整技术从天然气中产

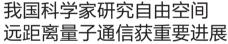
蒸汽甲烷重整技术是在催化剂作用下,将天然气 中烃类成分与蒸汽反应,生成含氢混合气,并经过一 系列的换热冷却,最终与杂质气体进行分离得到满足 用户要求纯度氢气的过程。由于这类氢主要通过碳 氧化合物生产,即天然气和煤炭,因此,生产过程中会 产生大量温室气体,这样生产出的氢气被称为"灰色 氢气",其制造成本低但会导致产生过量二氧化碳、

氧化碳以及其他污染物。在蒸汽甲烷重整技术中加 入碳捕捉和贮存技术后,这样生产出的氢气被称为 "蓝色氢气",其制造成本高但产生的温室气体较少。 此外,蒸汽甲烷重整技术中的甲烷本身,造成全球变 暖的强度甚至是二氧化碳的85倍。

电解水制氢有望实现零排放

电解水技术是使用可再生能源用电解的方式,将水 分解为氢和氧,这样生产出的氢气被称为"绿色氢气"。 任何资源生产的电力都能用来电解水制氢,并且,如果 此时使用的电力是可再生能源,例如由太阳能或风电产 生,那么在生产过程中将基本不会产生温室气体。

科学家近期研究出一种更新的技术,即质子交换 膜电解槽,他相较目前使用率更高的碱性电解槽,可 以提供更快的动态响应时间,更大的操作范围,更高 的效率以及非常高的气体纯度,但成本更高。不过据 科学家预测,成本问题将在未来六年内得到很大程度 的改善。根据彭博新能源财经一项最新的研究显示, 如果发展顺利,到2050年,由可再生能源制成的绿色 氢气能够满足全球四分之一的能源需求,相比现在能 够减少三分之一的二氧化碳排放。


"绿色氢气"最大的优点就是对环境友好、原料水 "无穷无尽",以及能够解决可再生能源发电过剩、发电 间歇性的难题。绿色氢气作为可运输、可供暖、可作重 工业燃料的清洁能源,未来完全可以填补石油和天然 气以外的能源需求,取得电力不能直接达到的效果。

"绿色氢气"正在成为行业焦点

"绿色氢气"与可再生能源配合可以弥补可再生 能源发电过剩、发电间歇的问题,起到"削峰填谷"的 作用,并且能够保障电网的安全运行。此外,可再生 能源生产的氢气也可以在大型罐中长期存储,以便出 售给工业应用,或者作为居民终端能源使用,为太阳 能和风电项目提供额外的盈利机会。

业内人士普遍认为,氢气作为重要的工业原料以 及清洁燃料,在未来几十年里将形成竞争的格局。从 2000年到2019年底,全球范围内共部署了253兆瓦的 绿色氢气项目,预计到2025年,将会再部署3205兆瓦 的绿色氢气项目,较此前增长1272%。

国际能源署(IEA)署长法提赫·比罗尔表示,当前 全球原油经济大幅震荡,"绿色氢气"作为节能减排目 标的新兴领域,正在成为行业焦点。现在,国际上有 不少国家已经开始了对绿色氢气的探索,我国也开展 了12个风电制氢项目和7个光伏制氢项目。欧盟前 段时间拟定的"绿色协议"中也已将"清洁氢气"制定 为了"优先发展领域"。 (本报综合)

新华社合肥电 (记者 徐海涛)从中国科学技 术大学获悉,该校教授潘建伟等人与清华大学王 向斌教授、中国科学院上海微系统与信息技术研 究所尤立星研究员等人合作,实现了基于远距离 自由空间信道的测量设备无关量子密钥分发实 验,开启了在自由空间实现远距离复杂量子信息

近年来,量子通信技术快速发展,但由于光纤 存在固有损耗,制约着远程量子通信的实现。在 外太空的自由空间信道,光信号损耗非常小,通过 卫星的辅助可以大大扩展量子通信距离。随着 "墨子号"量子卫星发射,卫星平台和地面光纤网 相结合的量子通信技术方案已见雏形,但还存在 大气湍流中如何实现量子干涉等重大技术挑战。

近期,潘建伟等人组成的科研团队开发出-种能抵抗强湍流能力的自适应光学系统,使双链

优化协议,在城市大气信道中实现了自由空间信 道的测量设备无关量子密钥分发实验,通信双方 的距离达到19.2公里,意味着向实现基于卫星的远 程量子通信迈出坚实一步。也为在自由空间进行 量子干涉的相关实验开辟了道路,比如研究在大

路总信道效率提升了约4倍到10倍。并通过测量 脉冲到达时间实时反馈,得到32皮秒的独立时钟 同步精度;用新技术方案使干涉光的频率差小于 10兆赫,从而实现远距离独立激光器之间的锁频。 得益于这些技术突破,科研团队利用四强度

空间尺度中探索量子力学与广义相对论融合等。

拓扑超导体

量子计算机的"蓝海"

量子比特(qubit)是量子计算机进行高速计 算的基础。由于目前的量子比特易受周围环境声 干扰,其计算准确度受限,引入拓扑量子比特有助 于解决这一难题。最近,发表在《自然》杂志的一 项新研究在超导二硫化铌晶体上建造单原子溴化 铬层,通过调控磁体-超导体比例形成自旋轨道耦 合作用,使电子以类似马约拉纳费米子的形式聚 合,而这就是形成拓扑量子比特的关键。此种超 导材料在二维层面展现了一维马约拉纳零能模式 (MZM)的性质,为拓扑量子位形成和拓扑量子计 算机发展打下了基础。 (本报综合)

近日,我国CR300BF型"复兴号"动车组投入运 营,这是该型号动车组在我国的首次上线运营。至 此,时速160公里至350公里复兴号系列动车组已全 部投用,标志着中国铁路科技创新迈出重要步伐,中 国高铁技术将持续领跑世界

新华社记者 李博 摄

鹤城工业集中区 鼎力打造承接产业转移"先行区"

前日,位于湖南怀化鹤城工业集中区内的省、市、 区重点项目——怀仁康养园2号楼,成功实现封顶,标 志着工业集中区已提前完成重点项目"百日大会战"目 标建设任务。

据鹤城工业集中区党工委书记夏梁峻介绍,园区 以国家承载产业转移示范区建设为契机,扎实推动园 区高质量发展,提升园区在鹤城经济中的支撑作用,以 供给侧结构性改革为主线,大力推进工业转型升级,加 快实现新旧动能转换。在2016—2019年的4年时间 里,实现了"百亿园区"的既定目标。

"十三五"期间,面对错综复杂的国内外形势, 鹤城工业集中区以企业为中心、招商为重点、建设 为抓手,加快承接产业转移,强化科技创新,培育壮 大主特产业,取得了令人瞩目的可喜成绩,实现了 向高质量发展的历史跨越。同时,在"十三五"期 间,完成了R&D经费支出IO亿元,2020年完成5亿 元,占全区60%。

如今,园区入驻企业达36家,拥有驰名商标和名 优品牌5个、科创团队12个、省级技术中心2个、市级 工程技术中心11个、产学研基地9个、申请获批专利 167件,同比增长200%。目前,园区正在全力推进高 新技术企业孵化园、创新创业服务中心、装配式建筑博 士后工作站建设,为企业提供科研、众创、孵化平台,加 速企业科技成果转化。