香山科学会议提出新概念

织物电子 可"穿"在身上的"计算机"

把一台计算机做成智能衣服舒适地"穿"在身上 将成为现实。

不过,这还取决于织物电子领域的未来发展。近 日,香山科学会议在北京召开织物电子、传感和计算的 学术前沿、核心技术与应用展望学术讨论会上,与会专 家首次系统论述织物电子、传感与计算这一新概念。

"以织物电子为支撑理论和技术的智能织物与服装 将驱动人类社会迈向泛智能时代,重构人类生活和生存 方式,催生新兴战略产业。"此次会议执行主席之一、电子 科技大学移动计算中心教授陈东义在会议报告上指出。

首提新概念

织物电子是一个典型的交叉学科和汇聚工程,与 多个领域紧密相关。会议执行主席之一、中国工程院 院士俞建勇指出,织物电子是基于技术演进提出的新 概念,涉及电子织物在传感执行和计算上的功能实现 等领域。

会议上,陈东义系统梳理织物电子、智能织物、智 能服装等相关概念的内涵、关系及区别。例如,织物电 子与含义最接近的柔性电子也有所区别。"柔性电子是 将有机或无机材料电子器件制作在柔性或可延性塑料 或薄金属基板上,通常包含电子元器件、柔性基板、交 联导电体和黏合层等4个部分,主要采用'印刷'的方 式来实现。"陈东义说,"但是,织物电子则不一定是这 样的结构,可以采用有机、无机和蛋白纤维材料,也不 一定要通过'印刷'来实现,而是可以用编织、刺绣、针 织、熔喷与粘合等工艺。"

据此,和与会专家进行深入讨论后,陈东义明确

提出了这样的概念:"织物电子是在纤维或纤维集合 体(或面料)维度上生成电路、传感(执行)、能量和计 算器件的电子技术。"

这一概念的提出得到与会专家的普遍认同。"因 此,织物电子系统主要包括柔性传感器、柔性执行器、 织物显示器、织物天线、产能和储能器及电子系统 等。"会议执行主席之一、香港理工大学纺织及服装学 系讲座教授陶肖明在报告中指出。

会议执行主席之一、郑州大学副校长王宗敏则认 为,该领域应在织物材料、织物传感与电子器件、织物 电路与连接、算法与软件、织物系统(智能服装)与应 用等几个层面展开系统性和综合性研究。

面临诸多挑战

简单地说,织物电子的含义就是要将一台计算机 做成一件衣服,真正"穿"在身上。

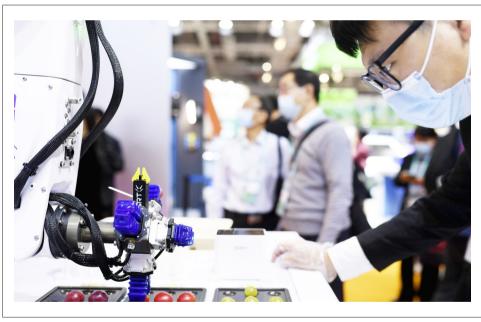
与会专家看到,目前大多数智能服装研究仍主要 专注于如何将器件和模块缝制或嵌入到衣服中,忽视 了纤维和织物电子研发与加工技术问题。"这令电子 器件与智能服饰难以充分融合。"陈东义表示。

作为一个崭新的领域,织物电子的发展面临诸多 挑战,亟待从科学上取得突破。例如,材料方面须在 实现电气性能的同时满足特定的机械和化学性能要 求;设计环节涉及在织物和纤维层次上构造传感、计 算器件或集成电路,目前尚无成熟的设计自动化与分 析工具;电子织物对制造环境要求苛刻,缺乏技术标 准、测试方法和制造设备等。

中科院深圳先进技术研究院研究员王磊强调:

"常规刚性计算设备(芯片等)与柔性服装物理难以兼 容的问题需要解决。另外,目前几乎还没有能够囊括 多尺度、多材料科学和工程工具的既定标准来指导智 能服装系统的设计、制造和评估。"

与会专家认为,多学科应通力合作、深入交叉,形 成有效的跨学科机制,共同迎接这些挑战。


"杀手级"应用牵引

"杀手级"应用往往是推动新兴产业发展的驱动 力。对于织物电子而言,与会专家认为,"杀手级"应 用有望从健康与医疗应用上切入。

通过身着智能服装收集的长时间、实时的人体生 理数据,在全新的算法下,将让医学专家获得与人体 健康相关的意想不到的新信息。"比如体温,如果能够 实现1秒钟测一次,24小时测下来,我们可以对人体 代谢水平有更深入的了解。"中国中医科学院教授张 启明在会议发言中表示,"我对能够实现这个目标的 智能服装、传感器非常期待。"

据介绍,一些前瞻性研究已经取得进展。例如, 中科院计算所研究员陈益强团队提出新的无线传感 方式,实现超低成本和功耗的传感;中原工学院纺织 学院教授熊帆团队提出织物干电极的新构造与原理, 设计出与之相匹配的新算法;电子科技大学生物医学 工程系教授饶妮妮团队基于心电监护的医学数据,发 展了复杂疾病监护与辅助诊断的计算技术。

与会专家相信,基于织物电子的智能系统能在健 康医疗领域大显身手,助力"被动医疗"走向"主动健 康"的健康医学模式转换。

近日,在进 博会技术装备展 区微软展台,一 名工作人员注视 SRT果蔬分选 平台

第三届进博 会技术装备展区 内各式先进机器 设备随处可见, 高度智能化的机 器应用场景让人 大开眼界。

新华社记者 李任滋 摄

手机跌落不碎屏 新材料可吸收冲击能量达96%

近日,蒙特利尔工程学院的 一个科研团队在《细胞报告物理 科学》杂志上发表了一项最新研 究成果,称他们利用增材制造的 方式,发明了一种新型复合材 料。该材料可吸收高达96%的 冲击能量,且材料不会破碎。这 种材料的出现使生产更加耐用 的智能手机保护屏成为可能。

研究人员表示,该材料的设计灵感来源于蜘蛛 网和其惊人的特性。弗里德里克·高斯林教授称,蜘 蛛网可以在其丝蛋白内部的分子层面,通过牺牲性 连接进行变形,因此可以抵抗昆虫撞击时产生的冲 击力,而正是这一特性启发了他们。

该研究旨在展示如何将塑料织带与玻璃面板相 结合,从而避免面板在受到撞击时破碎。聚碳酸酯 加热后,会变得像蜂蜜一样黏稠。利用该属性,高斯 林教授的团队使用3D打印机来"编织"一系列厚度 小于2毫米的纤维,然后在整个网络凝固之前,快速 垂直打印一系列新的纤维。

当3D打印机将打印材料缓慢挤出形成纤维时, 熔化的塑料会形成圆形,最终形成一系列环。"一旦 硬化,这些环就会变成牺牲性连接,从而赋予纤维更 大的强度。当碰撞发生时,这些牺牲性连接会吸收 冲击能量并断裂,以维持纤维的整体完整性,与丝蛋 白类似。"高斯林教授解释说。

研究的主要作者邹世波(音译)将一系列纤维网 嵌入透明树脂板,然后进行了冲击试验。结果,这种 晶片可分散多达96%的冲击能量而不会破裂,只是 在某些地方变形,从而保持了晶片的整体完整性。

其实,早在2015年发表的一篇文章中,高斯林 教授的团队就展示了制造这些纤维的原理。此次发 表的文章则揭示了当这些纤维缠结成网时如何表现 其性状。

高斯林教授认为,除智能手机屏幕,该材料还可 用于制造新型防弹玻璃、飞机发动机的保护涂层等。

蜘蛛吐丝既强又韧重要机制破解

蜘蛛丝为何兼具强度和韧性? 日本科学家在实 验室用化学工具模拟了蛛丝从吐丝器官中有序喷出 的过程,解密了这一自然现象背后的机制,为人类模 拟蜘蛛吐丝过程,并在未来创造超韧可持续材料提 供了埋论基础。

蜘蛛丝形成初期是液体形式,但不到一秒,这种 黏稠液体状的蛋白质就发生转变。在离开蜘蛛身体 时,被称为蜘蛛丝蛋白的物质会自我折叠并交织在 一起,在不受任何外力引导的情况下,构建出高度有 组织的结构。

日本理化学研究所可持续资源科学中心的结构 生物学家和生物化学家阿里·马来说:"这种自组装 过程可以制造出具有独特性能的材料。"

多年来,科学家一直在试图模拟蛛丝,希望创造 出超强韧并可持续使用的材料。为此,他们一直在 研究是什么化学诱因把储存在丝腺中的液体变成了 蛛丝。

此次,研究人员提出了一种新方法,在实验室里 用化学工具模拟了蛛丝从吐丝器官中有序喷出的过 程。他们发现,吐丝的一个关键步骤是,蜘蛛要把蛛 丝蛋白从包裹在丝腺内的水缓冲液中分离出来-这一步会使蛋白质高度浓缩;随后,大量涌入的酸性 物质促使蛋白质安全地互锁。

研究人员发现,液体状的蛛丝蛋白在移动过程 中的脱水是这种自我组装的先决条件。进一步研究 表明,时机和效率都是吐丝过程的关键要素。如果 蛛丝太早变硬,就会阻塞蜘蛛的腺体;时间太晚,蜘 蛛可能只吐出不成形的液体。

这篇论文用简化的实验室模型取代真实的蜘 阿克伦大学的蜘蛛丝研究员安吉拉·阿丽西亚-塞拉诺(未参与本实验)表示,这项有意义的研究让 人们一窥蜘蛛吐丝背后的重要机制与过程。"我们曾 看到过很多这个过程的开始和结束,但没有看到两 者之间的重要过程。"