江北区社区科普大学 "微课堂"正式开讲

本报讯 (通讯员 冯梦涛)在抗击新冠 肺炎疫情的关键时刻,江北区科协联合区 营养师协会、区老科协、科普大学的志愿者 讲师为社区科普大学的学员们倾力打造了 "微课堂",课程内容涵盖如何挑选和正确 使用消毒液、防病毒之家庭卫生习惯等,让 学员们足不出户也能及时学习科普知识, 了解最新科普内容。

江北区坚持"疫情不解除,科普不掉 线"的宗旨,每日在QQ、微信科普工作群推 送"科普中国""科普重庆"的优质科普资 源。江北区社区科普大学也不断寻找新 颖、有效的教学方法,为居民提供方便、快 捷了解卫生健康、疫情防控、安全饮食等方 面的知识,共同守护居民的健康。

万盛经开区科协 深入基层调研疫情防控工作

本报讯 (通讯员 黄兴盛)近日,万盛 经开区科协领导带队到万盛街道调研指导 科协工作,并召开了调研座谈会。座谈会 上,区科协一行听取了万盛街道科协工作

在疫情防控期间,万盛街道科协采用 线上线下相结合的方式,有效开展科学宣 传、防控知识普及、帮助企业复工复产,坚决 做到"疫情不解除,科普不掉线"。区科协对 万盛街道科协工作给予了高度肯定。针对 下一步工作,区科协建议万盛街道科协要充 分发挥"三长"的桥梁纽带和示范作用,带好 '三师",加大科协宣传力度,提升科协社会 知晓度。此外,区科协还为万盛街道科协送 去了科普知识读本200余册和防疫物资

涪陵区科协 助推疫情防控科普宣传

本报讯 (通讯员 王丹)为进一步加大 疫情防控知识宣传力度,涪陵区科协在充 分利用好本单位"涪陵科普"微信公众号的 前提下,积极与涪陵广播电视台、巴渝都市 报社对接,联合在"无限涪陵"、巴渝都市报 上开设科普专栏,集中宣传各类优质科学 防疫科普知识。同时,广泛动员调用辖区 内各乡镇(街道)科协、学(协)会、基层"三 长"、科普志愿者等力量传播科普知识。

接下来,涪陵区科协将继续利用好各 类媒体平台,积极策划推送内容,精心挑选 转载各类优质资源,切实把疫情防控科普 工作抓好抓实,为进一步提高公民科学素 质、提升科普公共服务水平奠定了基础。

北碚区科协 积极开展爱国卫生活动

本报讯 (通讯员 傅建华)连日来,北 碚区科协积极开展了"全民战疫情·同创文 明城"系列爱国卫生活动。

一是开展线上线下科普宣传,增强公 众正确的防控意识。通过宣传引导公众做 好个人防护,营造人人动手、全民参与、联 防联控的社会氛围。二是开展环境卫生大 扫除活动,打好疫情风险管控基础。区科 协组织全体机关干部参加蔡家岗街道的全 民动手日活动,彻底清扫了卫生死角。三 是购买防控物资,积极开展消毒防疫行 动。积极筹措并发放消毒液、口罩等物资, 安排专人定时对单位内部进行全面消毒, 减少病毒的传播途径。做好废弃口罩的无 害化处理,防止出现二次污染。

普 Ф 围 **浦斗** SCIENCE COMMUNICATION CHINA

APP

科普中国 科普中国 微博 微信

黑夜精灵

如果问你进化得最成功的哺乳动物 是什么,你会如何回答? 从单一物种的发

展来看,进化得最成功的无疑是人类。但如果只比较物种个体 的数目,答案可能会让你大吃一惊,既不是人类也不是家畜,而 是黑夜中的精灵-

能够飞行的哺乳动物

蝙蝠又称天鼠、挂鼠,是翼手目动物,翼手目是动物 中仅次于啮齿目动物的第二大类群,是一类演化出真正 有飞翔能力的哺乳动物,现生物种类共有19科185属 961种,除极地和大洋中的一些岛屿外,分布遍于全世 界,在热带和亚热带蝙蝠最多。由于大部分蝙蝠都是白 天休息,夜间觅食,因此,它们也被称为"黑夜精灵"。

蝙蝠的体形大小差异极大。最大的狐蝠翼展达 15米,而基蒂氏猪鼻蝙蝠的翼展仅有15厘米。蝙蝠的 颜色、皮毛质地及脸相也千差万别。蝙蝠的翼是进化 过程中由前肢演化而来。除拇指外,前肢各指极度伸 长,有一片飞膜从前臂、上臂向下与体侧相连直至下肢 的踝部。拇指末端有爪。多数蝙蝠于两腿之间有一片 两层的膜,由深色裸露的皮肤构成。蝙蝠的吻部似啮 齿类动物或狐狸。外耳向前突出,大且灵活。许多蝙 蝠也有鼻叶,由皮肤和结缔组织构成,围绕着鼻孔或在 鼻孔上方拍动。蝙蝠的胸肌十分发达,胸骨具有龙骨 突起,锁骨也很发达,这些均与其特殊的运动方式有 关。虽然它们善于飞行,但起飞时需要依靠滑翔,一旦 跌落地面后就难以再飞起来。蝙蝠的脖子短,而髋及 腿部细长。除翼膜外,蝙蝠全身有毛,背部呈浓淡不同 的灰色、棕黄色、褐色或黑色,而腹侧色调较浅。栖息 于空旷地带的蝙蝠,皮毛上常有斑点或杂色斑块,颜色 也各不相同。蝙蝠的取食习性各异,或为掠食性,或有 助于传粉和散布果实,从而影响自然秩序。

移动的病毒库

蝙蝠被称为"移动的病毒库",现在已经从蝙蝠 体内发现有超过140种病毒,其中有60多种都是人兽 共患病毒,例如2002-2003年起源于我国广东的 SARS病毒,果子狸只是中间宿主,而蝙蝠才是最初的 源头。全球肆虐的埃博拉病毒、马尔堡病毒、亨德拉 病毒、尼帕病毒、MERS冠状病毒……这些都能在蝙蝠 体内找到。由于蝙蝠喜爱群居,居住空间拥挤加速了 病毒在蝙蝠之间的传播。加上蝙蝠拥有长距离飞行 的能力,病毒因此搭上了便车,能从一个地方传播到

既然蝙蝠体内有这么多病毒,为什么它们却能安 然无恙呢?这得说到蝙蝠的一些"绝活",是这些特性 让它们成了"移动的病毒库"。对于恒温动物来说,体 形越大一般寿命也会越长,心跳越慢。比如大象的心 跳每分钟只有26次,平均寿命60年;蓝鲸的心跳可低 至每分钟2次(潜水时),平均寿命80岁;

而老鼠心跳可达每分钟500次, 寿命只有3年。这是因为 体形小散热会非常 快,因此需要

更高的新陈代谢速度以维持体温,蝙蝠同样如此,它们 因为需要飞行,能量消耗与体温维持的挑战更大,所以 需要更强的新陈代谢速率,蝙蝠飞行时的心率每分钟 可达800~1000次。按照正常规律来推算,蝙蝠的寿命 应该不超过3年,但实际上它们平均寿命为30年。这 是怎么回事呢? 大约在500万年前的一次基因突变 中,蝙蝠获得了修复基因的本领,所以它们的体细胞分 裂次数远超一般动物(人类的体细胞通常分裂次数为 50~100次)。

研究显示,蝙蝠体内一个被称为"干扰素基因刺激 --干扰素"的抗病毒免疫通道受到抑制,使蝙蝠 刚好能够抵御疾病,却不引发强烈的免疫反应。蝙蝠 为了与其携带的病原体达成平衡,在进化过程中获得 了抑制某些通道的能力。研究人员称,这一通道被削 弱却并未失去功能,表明蝙蝠可以对防御病毒的水平 进行微调,有效却不过分地对病毒产生免疫反应。另 外蝙蝠细胞耐热性很高,在40℃的体温下仍然能保持 相当稳定的状态,这也一定程度地抑制了病毒的复制。

蝙蝠的经济价值

尽管蝙蝠携带有大量病毒,但它们也具有很高的 经济价值。在热带和亚热带地区的原始森林中,大多 数热带植物幼体根本无法在亲本的阴影里正常发育, 一些母树甚至产生毒素阻止其幼树成熟。因此,植物 种子必须传播到远离亲本的地方才能保证种群的繁衍 和扩散,果蝠便将大量果实带到远离母树的地方,吃完 果实后将种子扔掉,种子落地、发芽、生根,逐渐生长成 茂盛的植物。对于无花果一类包含很多小种子的果 实,果蝠将整个果实吃掉,种子随后被蝙蝠排泄到各 处。研究表明,有些无花果只有经过果蝠或鸟类胃的 消化才能发芽。此外,蝙蝠也是重要的传粉者。很多 植物的花高度特化甚至专门在夜间开放以吸引蝙蝠, 依靠蝙蝠帮助它们传播花粉。

人类通过模仿蝙蝠的回声定位系统发明了雷达。 目前某些国家研制的隐形飞机,在某种程度上也是对 蝙蝠的拷贝。在医学上,从吸血蝙蝠唾液中提取的抗 凝血蛋白质溶解血栓的速度比目前临床用的药物快-倍。在蝙蝠数量丰富的地区,它们对农林业的害虫起 到重要的控制作用,这不仅有利于农林业的健康发展, 而且还减少了由于农药大量使用所造成的环境污染。 另外,蝙蝠集居地积累的排泄物还是一种经济的、优质 的农业肥料。

尽管蝙蝠体内携带着大量病毒,但想消灭它们是不

