"天琴"将奏何妙音?

·"天琴一号"发射成功背后的我国引力波探测之问

新华社记者 郑天虹 肖思思 马晓澄 胡喆

"天琴一号"要做什么?

"天琴一号"由国家航天局为工程 大总体管理单位,中山大学为用户单 位,中国航天科技集团五院航天东方 红卫星有限公司为卫星总体负责单 位,试验载荷分别由中山大学、华中科 技大学、航天五院等单位研制。

"天琴计划"是由中山大学校长、 中国科学院院士罗俊于2014年提出、 以中国为主导的国际空间引力波探测 计划:2035年前后,在距离地球约10万 公里的轨道上部署三颗卫星,构成边 长约为17万公里的等边三角形编队, 在太空中建成一个探测引力波的天文 台。因为三颗卫星组成的编队在天空 中形似竖琴,故名天琴。

据介绍,要实现引力波的探测,必 须具备两大基础技术,即空间惯性基 准技术和激光干涉测距技术;前者相 当于找准基点,后者相当于一把尺子。

"天琴计划"将分三次总计发射六 颗卫星上天,第一次发射一颗高精度 空间惯性基准试验卫星,第二次发射 两颗激光干涉测量技术试验卫星;第 三次发射三颗天琴卫星,组成编队进 行空间引力波探测。

罗俊说,此次发射的"天琴一号" 是"天琴计划"拟发射的第一颗试验卫 星。"天琴一号"好比是引力波"探头", 它的核心技术就是空间惯性基准技 术,这是空间引力波探测技术体系中 的关键技术之一。

那么"天琴一号"上天后将肩负怎 样的科学任务?

中山大学天琴中心副主任叶贤基 教授说,"天琴一号"身负三大科学任 务:一是对空间惯性传感器进行在轨 验证,二是对微牛级可变推力的微推

力器进行在轨验证,三是对无拖曳控 制技术进行在轨验证。此外,"天琴一 号"也将对高精度激光干涉测量技术、 高精度质心控制技术、高稳定性温度 控制技术等引力波空间探测共性关键 技术开展在轨验证。

"这颗卫星是整个'天琴计划'的 首颗技术验证星,离最终实现空间引 力波探测目标还有很长的路要走。" "天琴一号"技术试验卫星总设计师张 立华介绍,这一次的技术验证,将为未 来技术发展提供有价值的参考。

"空间引力波探测带来了极大的 技术挑战,很多技术指标高于现有水 平数个量级。因此,必须循序渐进、分 步实施,通过技术试验卫星验证相关 技术,待关键技术取得实质性突破后, 再去研制能够在空间探测到引力波的 卫星系统。"张立华说。

我们为什么要探测引力波?

在爱因斯坦广义相对论中,引力 波是时空波动的具体表现。宇宙大爆 炸、黑洞并和等天文事件会产生时空 涟漪,如同石头被丢进水里产生的波 纹,这种波动会以光速传播。当波动 抵达地球时,将"扭曲"地球的时空;这 种扭曲极其微弱,不仅你我无法感知, 普通的科学仪器也无法测量。

在此之前,人类观测宇宙的手段, 不管是红外光还是紫外光,靠的都是 电磁波。而引力波提供了一个全新的 观测宇宙的重要窗口。

"想象我们在一个房间内看到光 在内部传播,那是一种电磁波。而如 果房子本身形状发生了改变,则是引 力波的作用。"罗俊说。

中国科学家正在进行的空间引力

波探测的"天琴计划",其原理是:由于 引力波会造成时空的变化,导致空间 中两点之间的距离发生改变。当引力 波到达时,会造成一个方向压缩,另一 个方向拉伸,这种变化是有规律的。 通过精确测量引力波天文台三颗卫星 组成的等边三角形之间距离的微小变 化,可以测量引力波是否存在。

引力波探测跟我们普通人有关系 吗? 受访科学家表示,新的科学发现, 会给人类社会带来难以预估的影响。 引力波探测,将可能带动激光、材料、 光学、工程、计算机等诸多学科前沿的 发展;引力波探测的很多技术将对或 者已经对半导体制造、能源、材料、大 数据等实用领域产生深远影响。

中国科学院院士叶朝辉表示,作 为我国首颗国家立项的引力波空间探 测技术试验卫星,"天琴一号"不仅适 用于空间引力波探测计划,还将满足 其他基础科学空间实验对航天技术的 发展需求。

"'天琴一号'还是国内首颗无拖 曳控制技术试验卫星,无拖曳控制技 术是最前沿的航天技术。"叶朝辉说, 这将为开展下一代卫星重力测量、深 空探测、基础科学实验等提供重要技 术储备。

离引力波探测还有多远?

引力波的影响非常微弱,假设在 太空中有一个半径10万公里的粒子 圈,则引力波对粒子圈带来的形变也 只有百分之一个原子的大小,这对测 量精度提出了极高要求。

科学家表示,此次"天琴一号"成 功发射,意味着空间引力波探测技术 迈出了关键性的一大步;但这项工程

巨大,技术前沿且复杂,是科学界的 "无人之域",国际竞争日渐白热化。

引力波的频率很宽,就好像交响 乐中分低音、中音、中高音和高音;针 对不同频率,科学家采取了不同的探 测手段,科学目标也不尽相同。

目前,国内主要有三大项目正在推 进:一是由中科院高能所主导的基于地 面探测的"阿里实验计划",目的是探测 原初引力波;二是由中科院推动的同样 基于太空探测的"太极计划";三是由中 山大学主导的"天琴计划"。

而国际上太空引力波探测,以欧洲 空间局主导的"LISA空间引力波探测计 划"为代表,根据该计划,将在太阳轨道 发射三颗卫星组成等边三角形编队。

"天琴计划"首席科学家助理梅健 伟教授介绍,"天琴计划"的卫星由于 距离地球近,因此面临的来自地球和 地月相对运动带来的探测干扰也会多 一些,这就对"天琴计划"卫星的高精 度惯性传感、微牛级微推进器、高精度 无拖曳控制等技术提出了更高的挑 战。而"LISA计划"也面临距离地球 远、卫星入轨时间长、跟地球通信时间 长和在轨控制难度大等问题。

罗俊表示,"天琴一号"虽然意义 重大,但并不代表我国空间引力波探 测技术已经成熟。实际上我们距离实 现空间引力波探测的最终目标还任重 道远,必须本着求真务实的科学态度 和踏实严谨的科学作风,加快推进关 键技术攻关和在轨验证,加速推进人 才队伍建设和国内外科技合作。

"科学不仅仅是简单去理解别人探 索发现的东西,而应该自己能够走到前 沿去探索一些未知的世界,这是科学家 的使命,要对未知保持一颗好奇心,对 科学保持一颗敬畏心。"罗俊说。

天文学家成功绘制宇宙中 最遥远的耀变体"倩影"

耀变体是宇宙中最活跃的一种天体现象。 由中科院上海天文台安涛研究员领衔的中外天 文学家团队,成功捕捉到宇宙中最遥远的耀变体 的信号,并绘制出高分辨率图像(如图)。国际权 威期刊《自然-通讯》1月9日在线发表了相关研 究论文。

新华社发