江津区科协用科普活动 点亮山区儿童梦想

"我的梦想是发明可以自动巡逻的机 器人,保安叔叔就不用那么辛苦了。""我的 梦想是发明长翅膀的书包,每天送我上学 放学。"日前,江津区2021年"科普之光点亮 山区儿童梦想"暨科协圆梦助学活动在油 溪镇油溪小学开展。

在"科学奇思妙想大比拼"环节中,10 余名学生大胆地述说了科学梦。优胜者获 得了江津区科协资助的学习用品。江津科 技馆还带来了"探秘大气压""消失的彩虹" "大象的牙膏"等多个精彩的科学实验。科 普大篷车的"天鹅绒触觉""懒惰环""椎体 上滚"等30余件科技展品,机器人"悠悠"的 精彩节目也受到欢迎。

(江津区科协供稿)

綦江区科协联合农委 举办萝卜丰产技术培训

本报讯 (通讯员 熊亚中)日前,由綦 江区科协与区农业农村委联合举办的"2021 年萝卜优质丰产栽培技术培训"在区农业 农村委会议室进行。来自区内各街镇农服 中心的技术骨干,蔬菜专业协会会员及蔬 菜种植大户等90余人参与。

萝卜是綦江地区种植最为广泛的秋 冬季特色蔬菜品种之一,綦江赶水萝卜全 市有名。重庆市农科院蔬菜花卉所的主 讲专家从萝卜品种选择、栽培技术、病虫 害防治、采收等方面对白萝卜高产优质栽 培技术进行全面讲解介绍,总结了萝卜种 植中常见问题及解决方法,并回答了种植 户就病虫害防治、打造优良品种等方面的 问题。

合川秀山两地科协 ·区两群"协同发展

本报讯 (通讯员 赵影艺) 日前, 合川 区科协与秀山县科协在秀山涌洞乡开展协 同发展暨科技助力乡村振兴活动,落实市 科协关于推动"一区两群"区县科协对口协 同发展和科技助力乡村振兴工作要求。

涌洞乡是全市17个乡村振兴重点帮扶 乡镇之一。在实地调研后,合川、秀山两地 科协签订了《协同发展框架协议》,拟从人 才交流合作、促进产学研用、助力乡村振 兴、加强青少年科技教育、推进学术交流等 9个方面深入合作,推动两地科技资源共 享、优势互补,在成渝地区双城经济圈建 设、加快形成"一区两群"协调发展格局中 贡献科协力量。

彭水县科协集中培训 青少年大赛教练员

本报讯 (通讯员 龚鑫)2021年青少年 科技模型大赛和创意编程与智能设计大赛 在即,彭水县科协、县教委日前在彭水中学 举行了相关的教练员培训。

彭水县青辅协的辅导老师对南湖"红 船"航海模型竞赛、电动直线赛车模型竞 赛、水火箭航空模型竞赛、二合一坦克三轮 车模型竞赛进行了仔细的讲解,对参赛中 的要点和技巧做了有针对性的介绍。还邀 请市级创意编程与智能设计大赛组委会技 术支持专家,围绕青少年人工智能活动中 的创意编程及智能设计的创作等内容,讲 解人工智能世界最前沿的思想理论以及 Python、Micro:bit、Ardunio、Scratch等四个 赛项的具体操作和案例分析。

Ф 市斗 围 CHINA SCIENCE COMMUNICATION

科普中国 **APP**

科普中国 科普中国 微博 微信

什么是光谱及光谱成像

光,并不是无色的,不同频率的光会形成不同颜 色。光谱,就是光经过色散系统(如棱镜、光栅)分光后, 被色散开的单色光按波长(或频率)大小而依次排列的 图案,全称光学频谱。换句话讲,光谱是光的各种颜色 分布图谱,具体可表示为与波长对应的颜色显示或者与 波长对应的类高斯曲线。

光谱是用来鉴别物质、发现新元素和确定它的化 学组成的重要依据。按产生方式分,光谱可分为发 射光谱、吸收光谱和散射光谱。按产生本质分,光谱 可分为分子光谱与原子光谱。按波长区域分,光谱 被分为可见光和不可见光两大部分。可见光的波长 范围在380nm~780nm之间,颜色也就是人们看到的 彩虹色。不可见光包括紫外线、红外线、射线、微波 等,后者虽然不能为肉眼所觉察,但可通过仪器加以 记录。而利用单个或多个光谱通道进行光谱数据采 集和处理、图像显示和分析解释的技术,就是光谱成 像技术。

太阳光谱中的Hα波段

光谱中的Hα谱线,在天文学和物理学上是氢的-条具体可见的红色发射谱线,波长为65628埃,也就是 656.281 纳米。太阳光谱中的 Hα 波段谱线是太阳爆发 时响应最强的色球谱线,能够直接反映爆发的源区特 征,是用来观测耀斑及暗条(在日面边缘,又称日珥)等 众多太阳活动现象的一条重要红外线谱线。

在地面上进行红外天文观测,受地球大气的限制

中国"探日卫星"将探测 Hα波段光谱

"真的要飞上天和太阳肩并肩了!"第十三届中国国际航空 航天博览会日前结束,博览会展出了预计今年内发射的"太阳 双超卫星"。它是中国首颗太阳探测卫星,主要科学载荷为太 阳Ηα成像光谱仪,计划实现空间太阳Ηα波段的光谱成像探 测,标志着中国将正式进入"探日时代"。那么,如何理解这个 并不常见的太阳 Ηα 波段光谱呢?

> 观测使用。如果在地面开展对太阳Hα波段的光谱成 像观测,望远镜就很难实现高分辨成像。而空间卫星 可以不受天气、日夜变化的影响,对太阳进行全天候 观测。搭载于空间卫星上的成像光谱仪更能够观测 到全日面 Ηα 波段的光谱信息,这都是以往的地面观 测难以实现的。

太阳物理领域的国际影响力

我国预计在今年内发射的"太阳双超卫星"全称 为"太阳 Ηα 光谱探测与双超平台科学技术试验卫 星"。由航天八院509所、南京大学、长春光机所、航天 九院十三所等单位联合研发。该卫星在轨运行后,将 利用其上搭载的太阳 $H\alpha$ 成像光谱仪进行全日面 $H\alpha$ 波段光谱成像观测。

这种中心波长为6562.8埃的光谱扫描成像模式,扫 描一次全日面仅需46秒,可以在Hα谱线和FeI谱线临 近波段的300余个波长点,实现全日面或局部日面成 像,得到日面上任意一点的光谱信息,反映不同太阳大 气层次的特征。有效弥补当前空间望远镜在太阳低层 大气(光球和色球)观测上的不足。

太阳是当前人类在宇宙中唯一可以进行高空间分 辨观测的恒星,通过对太阳的探测,人们可以深入了解 天体磁场的起源和演化、高能粒子的加速和传播等重要 物理过程,对天体物理学研究具有重要意义。对太阳开 展光学波段的空间观测,是国际太阳物理研究领域必然 的发展趋势。因此,率先研究太阳爆发的动力学过程及 物理机制,揭示太阳爆发的触发机制和物理过程,将显 著提高中国在太阳物理领域的国际影响力。

(本报综合)

重庆市气象局荣获第四届"绽放杯" 5G消息专题赛全国三等奖

本报讯 (通讯员 郭若水 刘双娥) 日前,由工业和 信息化部主办,中国信息通信研究院等承办的第四届 "绽放杯"5G应用大赛5G消息专题赛决赛成绩揭晓。 重庆市气象局联合中国移动通信集团重庆有限公司、南 京绛门信息科技股份有限公司打造的"重庆气象5G消 息'智慧天气'公共服务平台"从400个项目中脱颖而 出,在进入决赛的20个项目中荣获全国三等奖。

据了解,该平台基于5G消息终端原生态短信窗口, 将天气短信内容富媒体化呈现,目前已正式运营。平台 上除了提供传统的基础天气预报,还有星空、云海等景

观以及夜间雨声等特色预报产品,同时利用5G极速传 递的特点,平台还将出行天气视频展现,用户能根据需 求,定制轨道站点天气。

利用5G,目前重庆市气象局首次实现了交互式气 象服务,并通过大数据分析用户群体特征,匹配合适的 内容推送针对性气象服务,根据用户的兴趣点进行调 整。未来,重庆市气象局将利用精准化推送、融媒体展 示、智慧化服务的5G消息全面升级传统短信服务,同时 依托移动运营商庞大用户基数和靶向精准服务能力,打 造以用户为中心的天气消息传播新生态,为公众带来更 多的气象服务体验感。